Dendy - генератор испытательных телевизионных сигналов. Новая версия. Схема, описание. Генераторы испытательных сигналов (ГИС) ТВ. Схемы, прошивки Схема генератора телевизионных сигналов на микроконтроллере

И
Оказывается для генерации видеосигнала достаточно всего одной микросхемы и двух резисторов. То есть можно сделать буквально карманный генератор видеосигнала размером с брелок. Такой прибор пригодится телемастеру. Его можно использовать при сведении кинескопа, регулировке чистоты цвета и линейности.

Работа генератора и его характеристики.
Генератор подключается к видеовходу телевизора, обычно это разъем типа "тюльпан" или .
Прибор генерирует шесть полей:
- текстовое поле из 17 строк;
- сетка 8x6;
- сетка 12x9;
- мелкое шахматное поле 8x6;
- крупное шахматное поле 2x2;
- белое поле.

Текстовое поле. Сетка 8x6. Сетка 12x9.
Шахматное поле 8x6. Шахматное поле 2x2. Белое поле.
Переключение между полями осуществляется кратковременным (длительностью менее 1с.) нажатием кнопки S2. Удержание этой кнопки в нажатом состоянии более длительное время (дольше 1 с.) приводит к выключению генератора (микроконтроллер переходит в состояние "SLEEP"). Включение генератора производится нажатием кнопки S1. О состоянии прибора (включен / выключен) сигнализирует светодиод.
Технические характеристики прибора:
- тактовая частота - 12 МГц;
- напряжение питания 3 - 5 В;
- ток потрребления в рабочем режиме:
. - при напряжении питания 3В - около 5мА;
. - при напряжении питания 5В - около 12мА;
- частота кадров - 50 Гц;
- число строк в кадре - 625.

Для формирования видеосигнала используется нулевой бит PORTA и целиком весь PORTB. (Этот порт работает в сдвиговом режиме. Несмотря на то, что сигнал снимается только с его нулевого бита, программа использует его весь. Поэтому все биты PORTB настроены как выходы.) Первый бит PORTA используется для индикации состояния генератора. Когда прибор включен, - светодиод горит. Когда прибор выключен, - светодиод погашен. Третий бит PORTA используется для переключения режимов работы генератора и его выключения. Кратковременное нажатие кнопки S2 позволяет перейти от одного поля генератора к другому. При удержании этой кнопки в нажатом состоянии дольше 1 с. прибор выключается (микроконтроллер переходит в состояние "SLEEP"). Чтобы включить генератор необходимо выполнить сброс. Это осуществляется нажатием кнопки S1. Напряжение питания прибора можно выбрать в пределах 3 - 5 В. При этом соответственно должны быть подобраны номиналы резисторов.
3В...– R5=456Ом и R6=228Ом
3,5В – R5=571Ом и R6=285Ом
4В...– R5=684Ом и R6=342Ом
4,5В – R5=802Ом и R6=401Ом
5В...- R5=900Ом и R6=450Ом
Здесь указаны расчетные значения. Реально можно ставить резисторы из стандартного ряда, например для 5В - 910Ом и 470Ом, а для 3В - 470Ом и 240Ом.
Напряжение питания генератора может быть и меньше 3В. Для каждого конкретного PICа минимум следует определять эксперементально. У меня, например, 20МГц-й PIC выпуска 2001 года работал и при 2,3 В.

Прграмма.
Программа формирует 6 полей. Каждое поле состоит из 301 строки (300 информационных строк + одна черная). Вообще расчетное число – 305 (625 строк растра - 15 строк кадровой синхронизации = 610. Информация в кадре выводится через строку (подробнее об этом смотри здесь), поэтому 610 / 2 = 305). Но при таком числе строк размер растра по вертикали получается немного больше того, что формирует видеосигнал, передаваемый телецентром.
Первая строка в каждом поле черная. В это время опрашивается состояние кнопки S2, вычисляется время удержания ее в нажатом состоянии и определяется необходимость перехода от одного поля к другому.
В графических полях есть небольшие искажения вертикальных линий. Это связано с тем, что длина некоторых строк на пару тактов больше остальных из за необходимости установления счетчиков циклов. Вцелом подпрограммы, формирующие графические поля, очень просты, поэтому нет необходимости их коментировать.
Подробнее разберем ту часть программы, которая формирует текстовое поле. Это наиболее сложный участок программы, занимает большую ее часть, использует максимум ресурсов микроконтроллера (вся память данных и значительная часть ОЗУ). Здесь используются фрагменты кода, взятые из игры Pong , которую написал Rickard Gunee.
Текстовое поле состоит из 17 строк, каждая из которых может состоять не более, чем из восьми символов. Символы отображаются через строку, то есть одна строка текста занимает 17 строк растра. (Такое отображение связано с ограниченными возможностями PIC .) Информация о графике символов хранится в памяти программ в разделе таблица. Например букве "Т" соответствует такой фрагмент кода: ;Т Смещение 0x88
retlw 0x7F ;.ШШШШШШШ retlw 0x49 ;.Ш..Ш..Ш retlw 0x49 ;.Ш..Ш..Ш retlw 0x08 ;....Ш... retlw 0x08 ;....Ш... retlw 0x08 ;....Ш... retlw 0x08 ;....Ш... retlw 0x3E ;..ШШШШШ.

Информация о тексте строк хранится в памяти данных (64 слова = 8 строк по 8 символов). Например в строке 08h (адресами от 08h до 0Fh) записано следующее:.20.60.48.50.90.58.20 20. Каждое значение - это координата (смещение от начала) символа в таблице. Значение.20. соответствует пробелу, .60. - буква "В", .48. - буква "И", и так далее. А все вместе образует "_ВИДЕО__".
Разберем на примере, как выводится текст. Согласно программе, в 12-й текстовой строке экрана необходимо вывести информацию, на которую ссылается строка памяти данных 28h (A0 B8 68 C8 D8 70 E0 D0). Таким образом, в следующих 17 строках растра должен быть выведен текст: " p i c 1 6 f 8 4 ". Это происходит следующим образом. В первой из 17 строк выводится только черный уровень. В эти 64 мкс, пока на экране отображается черная строка, в регистры ОЗУ переписываются "верхние значения" символов: 00h.от "p", 08h от "i", 00h от "c" 18h от "1" и так далее. Во время следующей строки эти данные последовательно передаются в PORTB, то есть на видеовыход. Третья строка снова черная. За время ее выполнения, в буфер переписываются "вторые сверху" значения символов: 00h.от "p", 00h от "i", 00h от "c" 1Ch от "1"… В четвертой строке эти данные выводятся на экран. И так далее, пока вся строка не будет отображена.
Подпрограмма кадровой синхронизации целиком взята из игры Pong, которую написал Rickard Gunee . Эта подпрограмма короткая, но довольно запутанная. Если объяснять, как она работает то, получится еще длиннее и запутаннее. Лучше всего положить рядом текст подпрограммы и рисунок осциллограммы кадровых синхроимпульсов, и не торопясь разобрать каждую строку кода. Скажу только, что подпрограмма начинает выполняться не с верхней строчки, а из середины (:-)), от метки "vertsync".

Разгон PIC16F84.
Как видно из схемы в этом проекте микроконтроллер работает на частоте 12МГц. На сегодняшний день выпускаются три версии PIC16F84: на 4МГц, на 10МГц и на 20МГц. (на 1.1.2002 соотношение цен приблизительно такое: $3.5, $5.3 и $6.3) В своем проекте Pong Rickard Gunee утверждает, что использовал 4МГц-е PIC16F84 и они часами работали на частоте 12МГц без проблем. Я попробовал, и действительно 4МГц-й PIC нормально работает на частоте, которая в три раза (!!!) превышает его допустимую частоту (правда я не стал испытывать судьбу и включал генератор лишь на несколько минут). При этом у 4МГц-го PICа потребляемый ток был на 10 .. 20 % больше, чем у 20МГц-го (отсюда, видимо и ограничение по частоте). Думаю, что 10МГц-й микроконтроллер можно разгонять до 12МГц без риска, но в коммерческих проектах этого, конечно же, делать не стоит.

Изготовление.
Скачать архив проекта (схема + ".asm" файл + ."hex" файл = 11,7 КБайт) можно . Не забудьте записать информацию о текстовом поле в память данных. О том, как это сделать, сказано в ".asm" файле.

Приветствую всех!
Уважаемые посетители сайта, хочу предложить Вам схему и печатную плату ГТИС (генератора телевизионных испытательных сигналов),который я сделал год назад по просьбе товарища.Была поставлена задача разработать печатную плату,которая должна
вмещаться в корпус "Ranitsa RP-201".(часы - радиоприемник).Т.к. я в свое
время уже собирал универсальный генератор испытательных телевизионных сигналов (версия 2.0 "Радиолюбитель" 1999г. №5 стр.5. Авторы:Chirkov & Larionov)
решил за базовый вариант использовать схему версии 3 (м/c CXA1645M-кодер PAL,
TDA8505 - кодер SECAM)
В качестве генератора - формирователя синхросигнала и сигналов испытательных изображений решил попробовать два варианта:
1.генератор тестовых сигналов -автор: Marcelo Maggi


2.малогабаритный генератор телевизионных сигналов.Автор: Александр Мусатов
(выбор необходимого испытательного сигнала осуществляется двумя клавишами)

Проверил на макетке оба варианта,остановился на втором.
Благодаря разработкам Ю.Чиркова,В.Ларионова,А.Мусатова и появился предлагаемый
генератор.Большое спасибо за их труд!
Файл печатной платы в формате Sprint Layout 3.0 и принципиальные схемы
в формате SPlan .
Самой лучшей программой для мелкосерийного "радиолюбительского" производства
печатных плат является русифицированная Sprint Layout 3.0.Нравится мне эта
программа за возможность разводки по рисунку.Сосканированные рисунки плат из
журналов и другой литературы могут быть использованы для восстановления дорожек
платы или переразводки элементов. Для этого необходимо сканировать изображение
(или использовать любой графический файл,переведя в файл *.BMP),оно будет
показано как фоновое на плате.
Программа SPlan 5.0 представляет из себя редактор принципиальных схем, она
поддерживает макросы, как встроеные,так и пользователя.Скачать программы можно
с сайта--
И если даже, вы уже работали с этими программами, рекомендуется прочитать
все разделы руссифицированых файлов помощи до конца, не исключено что вы найдете
неизвестные ранее возможности программ.С этого сайта можно скачать Sprint Layout
4.0 (русская версия)

Используя программу Sprint Layout 3.0,Вы можете изменять мой вариант разводки
печатных плат.(например,у Вас другой силовой трасформатор,диодный мостик,
корпус)
Схема и печатная плата пока так сказать для затравки.(изменен каскад на
тр-ах V5 и V6).В последующем будут выложены файлы (и доработка)
1.Генератор полного цветового телевизионного сигнала на двух микросхемах
Статья из ж. " РЭТ " №5 2003 г. автор:М.Медведев (формат DJVU)
2.Video pattern generator -автор: Marcelo Maggi
3.Зарубежные интегральные видеокодеры
Статья из ж. " Радиоаматор " №1-3 2002 г.автор:С.М.Рюмик (формат DJVU)
4.Даташиты на м/c TDA8505,CXA1645M в формате DJVU (я преобразовал из PDF -
меньше во много раз занимают места).

Dendy - генератор испытательных телевизионных сигналов. Новая версия

Самодельный картридж для видеоприставки "Dendy" , превращающий ее в генератор испытательных телевизионных сигналов (ГИТС), заинтересовал наших читателей. Благодаря их отзывам, автору конструкции и программы С. Рюмику из г. Чернигова был присужден поощрительный приз конкурса "Лучшая публикация 2001 г.".Сегодня мы представляем ГИТС-2 - усовершенствованный вариант картриджа.

По сравнению с первой версией предлагаемого прибора область его применения не изменилась - настройка и регулировка цветных (работающих в системе PAL) и черно-белых телевизоров, оценка качества кинескопа при покупке телевизора, формирование испытательных таблиц для кабельного телевидения. Однако число испытательных изображений, создаваемых ГИТС-2, увеличено с 81 до 466 (с учетом всех цветовых вариантов), а звуковых тест-сигналов - с двух до четырех. По некоторым характеристикам ГИТС-2 превосходит известные генераторы "Электроника ГИС 02Т" и "Ласпи ТТ-03".

Так как все функции генератора испытательных сигналов реализованы программным образом, при доработке необходимо было изменить только программу. Аппаратная часть прибора - собственно плата картриджа с панелями для двух микросхем РПЗУ могла бы оставаться точно такой, как в исходном варианте. Тем не менее и она подверглась небольшому усовершенствованию, позволяющему работать даже с частично неисправными приставками "Dendy".

Схема платы ГИТС-2, приведенная на рис. 1, отличается от первоначальной дополнительной перемычкой ХТ3, служащей для переключения экранных страниц видеопроцессора "Dendy".

(нажмите для увеличения)

Если в вашей приставке одна из видеостраниц неисправна (на изображении видны лишние линии или квадраты), можно перейти на другую, переставив перемычку и нажав кнопку SELECT джойстика. В положении "1" работает первая, в положении "2" - вторая страница видеопамяти.

Рисунки печатных проводников и расположение элементов на плате картриджа показаны на рис. 2.

(нажмите для увеличения)

Форма платы выбрана исходя из удобства ее установки в стандартный для "Dendy" корпус картриджа. Более узкую и без боковых вырезов плату не удастся в нем зафиксировать. Поэтому не стоит экономить материал, уменьшая ширину платы.

Корпус берут от пришедшего в негодность игрового картриджа. Иногда приходится его немного доработать, например, укоротить имеющиеся внутри пластмассовые штыри.

При разработке программы ГИТС-2 автор стремился реализовать максимальное число тестов, заняв в ПЗУ не более 2 Кбайт. В частности, изображение испытательной таблицы хранится упакованным по оригинальному алгоритму. Коэффициент сжатия - 50,2 % (с 960 до 482 байт). При этом подпрограмма-распаковщик данных заняла всего 57 байт. Для хранения тех же данных, упакованных методом ZIP, потребовалось бы всего 435 байт, но длина их распаковщика во много раз больше.

Коды, которые необходимо занести в РПЗУ DS1 и DS2 информационной емкостью по 2 Кбайт (микросхемы КР573РФ5 или их аналоги), приведены соответственно в табл. 1 и 2.

(нажмите для увеличения)

(нажмите для увеличения)

Свойства ГИТС-2 (как и ГИТС первой версии) не зависят от типа и емкости примененных микросхем РПЗУ, поэтому последние можно комбинировать на плате в различных сочетаниях, не забывая лишь установить в нужные положения перемычки ХТ1 и ХТ2. Если заменять микросхемы в процессе эксплуатации картриджа не планируется, можно соединить соответствующие контактные площадки на плате обычными проводами вместо перемычек-джамперов.

На новой плате (при перемычке ХТЗ в положении "2") будут работать и микросхемы, запрограммированные в соответствии с . Но применять их нужно в комплекте: обе "новые" или обе "старые". Естественно, в последнем случае ГИТС будет обладать лишь свойствами, о которых было рассказано в первоисточнике.

Если имеется готовая плата старого варианта ГИТС, чтобы воспользоваться всеми описанными ниже тестами, достаточно установить в ее панели микросхемы РПЗУ, запрограммированные по-новому.

Желающим внести в программу свои дополнения и улучшения, поможет , где подробно рассказано о методике разработки программ для "Dendy"

ОПИСАНИЕ ТЕСТОВ

После установки картриджа ГИТС-2 в "Dendy" и подачи питания на экране телевизора должна появиться испытательная таблица (верхний рисунок на 1-й стр. обложки) и прозвучать трель. Если изображение отсутствует, но звук имеется, попробуйте переставить перемычку ХТЗ на плате картриджа в другое положение, нажмите кнопку SELECT джойстика. Эта операция позволяет перейти с возможно неисправной видеостраницы на исправную. Если нет и звука, вероятно, отказали некоторые из используемых программой ячеек основного ОЗУ игровой приставки и дальнейшая работа невозможна.

Из-за особенностей видеосистемы "Dendy" сформировать на экране телевизора точные квадраты затруднительно (не удается уложиться в заданный объем ПЗУ). Поэтому во всех тестовых изображениях они выглядят прямоугольниками с соотношением сторон 4:5. Однако центральная окружность испытательной таблицы имеет правильную форму, что дает возможность оценить геометрические искажения растра и отрегулировать его размеры. Кроме того, таблица позволяет отцентрировать и сфокусировать изображения по пяти реперным знакам в центре и по углам экрана, проверить четкость по горизонтали и вертикали (200...250 линий по мелкой сетке). Имеются участки с шахматным полем, цветовой гаммой, диагональными линиями. При нажатии кнопок ВВЕРХ, ВНИЗ любого из джойстиков изображение инвертируется (второй сверху рисунок на 1-й стр. обложки), в центре, вверху и внизу экрана появляются надписи мелким шрифтом.

К следующим 11-ти испытательным изображениям переходят с помощью кнопок ВЛЕВО и ВПРАВО. Каждое имеет по четыре варианта, переключаемых кнопками ВВЕРХ и ВНИЗ. Варианты, в свою очередь, имеют от двух до 24-х разновидностей: кнопкой А изменяют цвет изображения, кнопкой В инвертируют его или включают/выключают наложенную на основное изображение мелкую сетку. Кнопкой START переключают звуковые тест-сигналы. Переход от одного теста к другому сопровождается звуком "бип", а начало нового цикла их смены - трелью.

Вертикальные цветные полосы (рис. 3, а) - восемь полос одинаковой ширины в следующем порядке (слева направо): белая, желтая, голубая, зеленая, пурпурная, красная, синяя, черная. Позволяют проверить правильность матрицирования, настроить контуры коррекции предыскажений, оценить цветовую насыщенность в смежных строках. Оттенки формируемых цветов зависят от особенностей видеопроцессоров "Dendy" разных моделей и могут немного различаться. Варианты: замена основных цветов дополнительными, отключение цвета (серая шкала, третий сверху рисунок на 1-й стр. обложки). Разновидности: буква С на синей полосе для удобства ее идентификации.

Горизонтальные цветные полосы (рис. 3, б, в) - восемь полос, аналогичных вертикальным, но самая нижняя - вдвое меньшей высоты.

Равномерное серое поле. Позволяет проверить и отрегулировать статический баланс белого, чистоту цвета. Варианты: четыре градации яркости. Разновидности: циклическая с периодом 2 с инверсия изображения, что позволяет проверять качество стабилизации размера изображения и устойчивость синхронизации кадровой и строчной разверток. При нажатии и удержании кнопки В частота "мигания" увеличивается вчетверо.

Равномерное красное поле. Служит для проверки чистоты цвета, выявления дефектов маски кинескопа (на изображении не должно быть белых точек). Варианты: четыре градации насыщенности. Разновидности: "мигание" с периодом 1 или 2 с.

Равномерное зеленое поле аналогично красному.

Равномерное синее поле аналогично красному.

Шахматное поле из черно-белых прямоугольников (16 столбцов, 15 строк) позволяет оценить линейность разверток, геометрические искажения растра, проверить отсутствие цветных окантовок. Варианты: инверсия изображения, увеличенные вдвое размеры прямоугольников (нижний рисунок на 1-й стр. обложки). Разновидности: наложенная на изображение мелкая сетка, замена белого одним из 12-ти возможных цветов (рис. 3, г).

Монохромные полосы ("матроска", рис. 3, д) служат для оценки линейности развертки и равномерности окраски протяженных участков экрана. Варианты: вертикальные или горизонтальные полосы, увеличенная вдвое ширина полос, инверсия изображения. Разновидности: наложенная на изображение мелкая сетка, замена белого одним из 12-ти возможных цветов (рис. 3, е).

Точечное поле (рис. 3, ж). Белые точки (15x16) на черном фоне с маркером в центре служат для проверки фокусировки и астигматизма электронного луча по всей площади экрана, а также статического и динамического сведения лучей основных цветов. Варианты: уменьшенный вдвое или увеличенный вдвое и вчетверо шаг точек (можно выбрать оптимальный в зависимости от размера экрана телевизора). Разновидности: инверсия изображения, замена белого одним из 12-ти возможных цветов (рис. 3, з).

Сетчатое поле из 15х 16 тонких белых линий на черном фоне служит для регулировки сведения красного, зеленого и синего лучей, проверки фокусировки. Варианты: уменьшенный вдвое или увеличенный вдвое и вчетверо шаг сетки. Разновидности: инверсия изображения, замена белого одним из 12-ти возможных цветов (рис. 3, и, к).

Звуковые тест-сигналы служат для проверки канала звука телевизора. Предусмотрены следующие сигналы, переключаемые циклически кнопкой START: прямоугольные импульсы скважностью 2 ("меандр") частотой 500 Гц, пилообразные импульсы частотой 6600 Гц, прямоугольные импульсы скважностью 4 частотой 6600 Гц, "сирена" - "меандр" линейно изменяющейся частоты (от 27 до 12500 Гц в течение 9 с).

Сколько я занимаюсь электроникой, всегда хотел заиметь генератор сигналов различной формы. Недавно мне понадобилось получить синусоидальный сигнал с помощью цифровых методов, и я решил что сделаю себе хороший генератор! В итоге я сделал простой, но функциональный генератор сигналов который может генерировать: меандр, треугольник, синус, шум и пилообразный сигналы. Максимально генерируемая частота - 60kHz (килогерц). Пока что в настоящей прошивке, частоту можно устанавливать только при генерации меандра, для остальных сигналов можно устанавливать лишь задержку в микросекундах. Основой устройства является AVR микроконтроллер ATtiny2313, сигнал генерируется с помощью 8 битного цифро-аналогового преобразователя (ЦАП), данные о частоте, сигнале или задержки отображаются на ЖК индикаторе 8x2. Вот собственно принципиальная схема:

Для сборки понадобятся детали:
1. Микроконтроллер Attiny2313 - 1шт.
2. ЖК индикатор WH0802 или с HD44780 совместимом - 1шт.
3. Микросхема LM324 - 1шт.
4. Тактовые кнопки без фиксации - 3шт.
5. Резистор 10 кОм - 1шт.
6. Резистор 300 Ом - 1шт.
7. Резистор 2 кОм - 8шт.
8. Резистор 1 кОм - 9шт.

ЦАП собран на резисторах и подключён напрямую к порту B микроконтроллера, сигнал после ЦАПа усиливается с помощью операционного усилителя LM324. ЖК индикатор я применил WH0802 c совместимом контроллером, данный ЖКИ имеет 2 строки по 8 знакомест каждая. Существенно применение любого ЖК индикатора с совместимом контроллером с HD44780. Микроконтроллер применить Attiny2313 можно с любыми буквенными индексами, в любых корпусах. Кнопки можно применить любые тактовые, без фиксации. Кнопкой "Выбор" выбирается тип генерируемого сигнала. Кнопками "Плюс" и "Минус" устанавливается частота или задержка. При включении устройства оно сразу начинает генерировать сигнал, по умолчанию это меандр. Напряжение питания: 5 вольт. Вот осциллограммы генерируемых генератором сигналов:






Я собрал свой генератор сигналов в пластмассовом корпусе ZIV, вот что получилось:

Первые испытания вместе с самодельным осциллографом:

Схему я собрал на печатной плате сделанной с помощью , рисунок печатной платы в можно найти в файлах к статье. На плате я использовал детали в SMD корпусах, исключение лишь составляет микросхема LM324, она использована в DIP корпусе. Прошивку для устройства я писал в среде BASCOM-AVR исходник прилагается. Также прилагается проект устройства в программе . Кстати, после прошивки не забудьте установить следующие фьюз биты (для программы SinaProg):

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATtiny2313

1 В блокнот
U2 Операционный усилитель

LM324

1 В блокнот
R1-R8 Резистор

2 кОм

8 В блокнот
R9-R16, R18 Резистор

1 кОм

9 В блокнот
R17 Резистор

10 кОм

1 В блокнот
R19 Резистор

300 Ом

1 В блокнот
BTN1-BTN3 Кнопка Без фиксации 3

Генератор видеосигнала на микроконтроллере

Источник: http://pic16f84.narod.ru

Для генерации видеосигнала достаточно всего одной микросхемы и двух резисторов - т.е. можно сделать буквально карманный генератор видеосигнала размером с брелок. Такой прибор пригодится телемастеру. Его можно использовать при сведении кинескопа, регулировке чистоты цвета и линейности. Генератор подключается к видеовходу телевизора, обычно это разъем типа "тюльпан" или "SCART".

Прибор генерирует шесть полей:
- текстовое поле из 17 строк;
- сетка 8x6;
- сетка 12x9;
- мелкое шахматное поле 8x6;
- крупное шахматное поле 2x2;
- белое поле.

Переключение между полями осуществляется кратковременным (длительностью менее 1с) нажатием кнопки S2. Удержание этой кнопки в нажатом состоянии более длительное время (дольше 1 с) приводит к выключению генератора (микроконтроллер переходит в состояние "SLEEP"). Включение генератора производится нажатием кнопки S1. О состоянии прибора (включен/выключен) сигнализирует светодиод.

Технические характеристики устройства:
- тактовая частота - 12 МГц;
- напряжение питания 3 - 5 В;
- ток потребления в рабочем режиме:
- при напряжении питания 3В - около 5мА;
- при напряжении питания 5В - около 12мА;
- частота кадров - 50 Гц;
- число строк в кадре - 625

Вся работа по формированию видеосигнала выполняется программой, зашитой в микроконтроллере. Два резистора вместе с сопротивлением видеовхода телевизора обеспечивают необходимые уровни напряжения видеосигнала:
- 0 В - синхроуровень;
- 0,3 В - уровень черного;
- 0,7 В - уровень серого;
- 1 В - уровень белого

Рис. 1. Принципиальная схема генератора

Для формирования видеосигнала используется нулевой бит PORTA и целиком весь PORTB (этот порт работает в сдвиговом режиме). Несмотря на то, что сигнал снимается только с его нулевого бита, программа использует его весь. Поэтому все биты PORTB настроены как выходы. Первый бит PORTA используется для индикации состояния генератора. Когда прибор включен, - светодиод горит. Когда прибор выключен, - светодиод погашен. Третий бит PORTA используется для переключения режимов работы генератора и его выключения. Кратковременное нажатие кнопки S2 позволяет перейти от одного поля генератора к другому. При удержании этой кнопки в нажатом состоянии дольше 1 с. прибор выключается (микроконтроллер переходит в состояние "SLEEP"). Чтобы включить генератор необходимо выполнить сброс. Это осуществляется нажатием кнопки S1. Напряжение питания прибора можно выбрать в пределах 3 - 5 В. При этом соответственно должны быть подобраны номиналы резисторов.
3В - R5=456Ом и R6=228Ом
3,5В – R5=571Ом и R6=285Ом
4В – R5=684Ом и R6=342Ом
4,5В – R5=802Ом и R6=401Ом
5В - R5=900Ом и R6=450Ом
Здесь указаны расчетные значения. Реально можно ставить резисторы из стандартного ряда, например для 5В - 910Ом и 470Ом, а для 3В - 470Ом и 240Ом.

 
Статьи по теме:
Как сделать удобной работу с большим количеством вкладок в браузере
Вы сможете работать за компьютером быстрее, если оптимально расположите окна и вкладки браузера. Как быстро переключаться между окнами Нажмите и удерживайте клавишу Alt . Затем нажмите и удерживайте Tab , пока не откроется нужное окно. Как просматривать д
Установка и удаление AVG Internet Security Антивирус авг как включить компонент программы
В этом уроке мы рассмотрим, как установить бесплатный антивирус AVG. Почему именно бесплатный? Этот и другие вопросы я подробно опишу ниже! Сегодня проводить время в Интернете без защиты очень опасно, особенно новичку. Под защитой я подразумеваю антивир
Проверенные безопасные способы
С целью заработка в интернете многие пользователи запускают каналы на Ютубе. Идея хорошая, только без качественных роликов и грамотной раскрутки, никогда не получится зарабатывать большие деньги. Контент играет ключевую роль, а публикуя
Сервисы распознования капчи Автоматическое распознавание капчи
Здравствуйте, уважаемые читатели блога сайт. Антикапча (временно это был Антигейт) – это многофункциональная площадка для автоматического распознавания так называемой капчи (защиты от автоматического постинга ботами, а также защиты поисковиков от парсинг