Ламповый унч для наушников с трансформаторным выходом. Лампово-транзисторный УНЧ для наушников и колонок (6Н23П). Не очевидный функционал

А вот мой лампач-малыш, исправно работает уже год. Собран и проверен специально для поклонников (любителей, и не только) пентода 6Ж1П, почему так - да просто, эта лампа настолько не дефицитная, что полазив по сусеках, наскреб два десятка. В триодном включении 6Ж1П эквивалентна триоду 6С1П.

Вот какие параметры у меня получились для однотактного каскада. Измерения 6Ж1П в тестовом триодном включении:

  • Ua=85V Ua=126V
  • Uk=2V Uk=2,2V
  • U=250V U=250V
  • Ra=47kOhm Ra=12kOhm
  • Rk=620 Ohm Rk=220 Ohm
  • Ck=150mF Ck=150mF
  • Uin=~1V Uin=~1V
  • Uout=27V Uout=23V
  • КHИ=0,7-1% КHИ=0,25-0,4%
  • АЧХ 5 Гц-200кГц по уровню -3дБ

Для опытов используйте любой маломощный пентод, например, 6Ж1П (буква Ж в маркировке лампы означает пентод с укороченным нижним загибом анодно-сеточной характеристики) из пальчиковых ламп. Схема представляет собой простейший однокаскадный усилитель НЧ. Для питания усилителя используйте выпрямитель. Сверьте монтаж с принципиальной схемой, включите питание и подайте на вход усилителя низкочастотный сигнал от МП3 плеера, с выхода компьютера или с DVD-проигрывателя. Лампа усилит сигнал, а наушники преобразуют его в звуковые колебания.

Емкость этого конденсатора должна быть такой, чтобы не оказывать существенного сопротивления колебаниям низких частот усиливаемого сигнала. В ламповом усилителе для наушников этому требованию отвечают конденсаторы емкостью не менее 0,05 мкф.

На схеме одного из возможных вариантов маломощного усилителя для низкоомных наушников (4-16 Ом), используем небольшие выходные трансформаторы типа ТВЗ1-9. Тут выходной каскад показан в пентодном включении лампы. Для стерео потребуется два аналогичных канала.

А вот собственно схема УНЧ, который был использован для моего прибора. Только не забываем, включаем лампы триодами. Сам УНЧ нарисован только для одного канала, второй - такой-же.

Кстати лампа 6ж1п (аналог EF95), допускает и пониженное напряжение питания. На схеме ниже смотрите варианты сверхнизковольтных ламповых усилителей для наушников.

В плане корпуса и дизайна - что у кого получится, на фотографиях вы видите металлический корпус от блока питания антенного усилитель телефона Senao. В общем звучанием получившегося лампового усилителя для наушников доволен выше крыши!

В плане мощности поверьте, хватит с головой, амплитуда на выходе подскакивает до 1,5 вольт, при импедансе 32 ома.

Но не забывайте! Вся красота этого усилителя напрямую зависит от того, чем собираетесь слушать. Китайские бананы за 5 долларов тут будут неуместны. В общем аппарат сделан по всем правилам HI-END и несмотря на минимальные расходы не особо уступает брендам. Автор фото: -igRoman-

Мне жуть как захотелось послушать хваленый теплый ламповый звук. Но купить аппарат, честно сказать, душит жаба. Поэтому, найдя схему несложного лампового усилителя для наушников , взвесив свои возможности и посчитав затраты, я понял, что для начала лучше быть не может.

То, что я представляю сейчас это уже вторая версия сделанного мной усилителя. Первая была собрана почти навесным монтажом. На нем я долго и плодотворно игрался с блоком питания. Из-за того, что собранный фильтр питания предлагаемый в оригинальной схеме не мог подавить пятидесяти герцовое гудение. Которое пропало только после установки «электронного дросселя».

Отличий от схемы по ссылке выше практически нет. Но мной было понижено анодное напряжение с 270 до 200 вольт и повышен номинал емкости С3 с 1 до 2,2 мкф. Так как у меня есть собранный девайс по аутентичной схеме, то можно сказать, что внесенные мной изменения не повлияли на качество звучания. По крайней мере на мой слух.

Так как я использовал , то говорить об использовании ламп 6Н1П и 6Н6П не приходится из-за очень большого тока накала (0.6...0.7 А на лампу). Зато понизив анодное напряжение, стало возможным применение менее габаритных электролитов.

Из-за того, что для использования ламп 6Н3П придется делать другую разводку печатной платы, остается только 6Н2П и 6Н23П. Эти лампы взаимозаменяемы, но и здесь есть подвох. Просто так заменить лампы одну на другую не удасться т.к. после замены любой из ламп усилитель необходимо настраивать, подбирая резистор Rk и добиваясь половины напряжения питания на анодах нижних ламп. А в остальном, да. Сначала можно сделать усилитель на лампах 6Н2П, как более дешевых, а потом перенастроить его под 6Н23П и сравнить звучание.

Немного о деталях. Все резисторы должны быть мощностью не менее 0,25 Вт Конденсаторы С3 и С4 должны быть рассчитаны на напряжения питания (я поставил чуть ниже, на 160 V, не те, что лежат в коробке), а вот конденсаторы в цепи катода С1 и С2 на напряжение 6...10 вольт, но так как они напрямую влияют на звук, то к их качеству необходимо предъявить повышенные требования и чем больше номинал конденсатора С1, тем лучше.

Немного о корпусе. После проблемы с анодным напряжением в ламповой технике есть еще одна проблема, это проблема корпуса. Подобрать уже готовый для своих нужд практически не возможно, а делать корпус своими руками не так уж легко. Поэтому я здесь применил старый проверенный способ изготовление корпусов из фольгированного текстолита. Ну и конечно куда без деревянных корпусных деталек в ламповой технике. :-) Габаритные размеры требуемой коробки примерно 160Х170Х50 мм.

Т.к. лампы сильно нагреваются для них сделал специальные отверстия в верхней крышке, но после недолгой эксплуатации выяснилось, что их катастрофически не хватает и пришлось досверливать как верхнюю крышку так и делать отверстия в нижней части корпуса для усиления конвекции воздуха.

Вот таким нехитрым способом на стоечках умещаются все потрошки усилителя. После улучшения конвекции воздуха для охлаждения ламп корпус хоть и нагревается, но не так сильно чтобы нельзя было спокойно тронуть рукой.

И в заключении о личных ощущениях от прослушивания. Глубокая детализация, мягкие не искаженные басы и тот самый ламповый звук. Про «тот самый» я не лукавлю. Разница в воспроизведении одной и той же композиции на лампе и на транзисторах, через наушники сильно отличается не в пользу транзисторов, (у меня с конца прошлого века стоит Pioneer A305R) а если еще и тембр блок отключить, то вообще всё очень грустно. Да, еще необходимо добавить то, что для получения должного удовольствия от прослушивания мне пришлось со временем обзавестись высокоомными наушниками Sennheiser HD 280-13 300 Ом. До этого были недорогие HD 180 и бананчики CX 215. Но басы на них были не выразительные, а иногда и похрюкивали когда делал музыку погромче.



Неожиданное продолжение.

Дело в том, что как-то пришел ко мне приятель, попить пивка, послушал аппарат и сказал, что без него домой не уйдет. Пришлось отдать ему девайс за небольшое вознаграждение. Но так, как я уже не мыслю себя у компьютера без этого усилителя, пришлось сделать еще один. Размеры платы 95х95. Так как корпус подбирал уже после того как сделал плату, мне не удалось реализовать идею бокового разъема питания поэтому пришлось вставлять его на место тюльпанов, а их сдвинуть к краю. Но и так не плохо получилось.


Корпус взял стандартный дюралевый 120х95х35 прикрутил сверху трансформатор, а на платке разместил усилитель и фильтр анодного питания.


Ну и для пущей важности закрыл трансформатор маленькой консервной банкой от зеленого горошка. Даже красить не стал. Она немного высоковата, зато идеально подходит по диаметру.

Предлагаю вниманию заинтересованных читателей второй вариант телефонного лампового усилителя, на этот раз с выходным трансформатором. Если описанный ранее усилитель предназначался для работы с головными телефонами, имеющими сопротивление от 100 до 600 Ом, то этот усилитель может работать с нагрузками от 15 до 600 Ом.

Какой из усилителей целесообразнее сделать?

Главное достоинство трансформаторного телефонного усилителя в том, что его можно довольно легко приспособить к широкому диапазону нагрузок, одновременно обеспечив хорошее демпфирование, - это делает его применение универсальным. К достоинствам можно также отнести меньший коэффициент гармоник в основном диапазоне рабочих частот, достигаемый благодаря достаточно легкой нагрузке на выходной триод (однако на самых низких и самых верхних частотах коэффициент гармоник в силу некоторых принципиальных свойств трансформатора растет). Говоря о легкости нагрузки, я имею в виду, что приведенная к аноду выходной лампы нагрузка оказывается весьма высокоомной, много больше выходного сопротивления лампы, и линия нагрузки на выходной характеристике лампы идет под небольшим углом, обеспечивая работу с минимальными искажениями (для лампового триода в этом отношении идеальной является нагрузка с бесконечно большим сопротивлением - на выходной характеристике это будет горизонтальная линия). По той же самой причине нет никакой необходимости в двухтактном выходном каскаде и, соответственно, не нужен обеспечивающий его работу парафазный каскад. Таким образом, естественно будет применить однотактный выходной каскад на триоде, работающем в классе А. При этом ток покоя лампы будет являться подмагничивающим для выходного трансформатора, и его сердечник должен иметь немагнитный зазор, исключающий насыщение магнитопровода и выводящий его в наиболее линейную область петли гистерезиса. Малые искажения и высокий коэффициент демпфирования такого выходного каскада не требуют введения какой-либо обратной связи, и это благоприятно сказывается на качестве звучания.

Перейду к описанию принципиальной схемы предлагаемого телефонного усилителя. В нем используются всего три лампы: одна 6Н23П-ЕВ (6Н23П) и две 6Н6П (6Н6П-И). Каждый канал усилителя (см. рис. 1) двухкаскадный, с гальванической связью между каскадами. Разделительные конденсаторы, заметно влияющие на звук, в усилителе отсутствуют.

Чувствительность усилителя - 0,5 В при максимальной выходной мощности. Верхняя граница полосы пропускания по уровню -3 дБ составляет не менее 60 кГц при самой низкоомной нагрузке и около 100 кГц при самой высоко-омной. Нижнюю границу полосы пропускания измерить не удалась, во всяком случае, на частоте 17 Гц (самой нижней у моего ГЗ-102) уменьшения амплитуды не отмечено. Нелинейные искажения определяются преимущественно второй гармоникой и составляют 2-3% при максимальной выходной мощности на частоте 1 кГц (по третьей гармонике - примерно 0,3%). При нормальной громкости искажения по второй гармонике на порядок ниже (падают пропорционально уменьшению сигнала) и совсем уж малы по третьей (амплитуда третьей гармоники падает пропорционально квадрату уменьшения выходного напряжения).

Конденсатор СЗ (рис. 1) является выходным элементом стабилизатора электропитания, установленным на плате усилителя (или в непосредственной близости от него). В источнике анодного питания этого варианта телефонного усилителя (рис. 2) имеется стабилизатор постоянного напряжения, что может быть очень полезно в том случае, если стабильность питающей сети оставляет желать лучшего (у меня дома, например, сетевое напряжение постоянно колеблется от 180 до 230 В!).

Стабилизатор состоит из источника тока на транзисторе VT2, резисторах R4, R5 и диодах VD8, VD9. Источник питает стабилизированным током последовательно соединенные стабилитроны VD2-VD7. При этом пять стабилитронов одинаковые, типа КС551А, а тип шестого необходимо подбирать в каждом конкретном случае (из-за разброса номинального напряжения стабилизации стабилитронов) для получения суммарного напряжения +(300 + 10) В. Стабилизированное напряжение с цепочки стабилитронов через RC-фильтр R3, С2 поступает на базу составного транзистора VT1, с эмиттера которого напряжение +300 В подается на оба канала усилителя для питания анодных цепей. Между эмиттером и коллектором этого транзистора включен обратно смещенный диод VD1, предохраняющий транзистор от электрического "пробоя" при выключении усилителя. Выпрямитель источника питания состоит из диодного моста VD10 и накопительного конденсатора СЗ. Элементы R1, R2, R6, R7, С1 служат для подачи в цепь накала лампы положительного потенциала +52 В, который уменьшает фон, возникающий из-за питания нитей накала переменным током.

При изготовлении усилителя основное внимание следует уделить выходным трансформаторам левого и правого каналов (см. рис. 3).

Магнитопроводы УШ 16 х 24 с пластинами толщиной 0,3 мм и каркасы катушек проще всего взять от унифицированных телевизионных выходных трансформаторов ТВЗ-1-9. При этом трансформаторы надо будет аккуратно разобрать, разогнув лапки обойм крепления магнитопровода. Затем катушки снимаются с магнитопровода, каркасы освобождаются от провода и перематываются, после чего трансформаторы собираются в обратном порядке. ТВЗ-1-9 имеют требуемый зазор в магнитопроводе, и его надо просто сохранить при сборке. Надетые на трансформаторы обоймы крепления необходимо плотно обжать на магнитопроводах тисками (но не молотком!). Катушка каждого выходного трансформатора секционированная, это нужно для увеличения полосы пропускания. Секций семь: три в первичной обмотке и четыре во вторичной. Номера секций соответствуют порядку их намотки на каркас. Секции 1, 3, 5 и 7 относятся к вторичной обмотке и содержат по 150 витков провода ПЭВ- 2 диаметром 0,3 мм (два слоя), намотанных виток к витку. Секции 2,4 и 6 относятся к первичной обмотке: 2 и 6 секции содержат по 1500 витков (6 слоев), а 4 секция - 2 000 витков (8 слоев) провода ПЭВ-2 диаметром 0,08 мм. Выводы начала и конца каждой секции пропускаются через отверстия в каркасе катушки, при этом первичная обмотка выводится на одну сторону, а вторичная - на другую, и они соответственно маркируются. Между секциями обмоток прокладывается изоляция толщиной 0,1 мм из пяти слоев микалентной бумаги или одного слоя лакоткани. Поверх последней секции накладывается изоляция в два раза толще. Намотав катушку, ее необходимо хорошенько проварить в расплавленном парафине, стеарине или церезине. Компаундами катушку не пропитывать! Секции первичной и вторичной обмоток соедините на приклеенных к трансформатору промежуточных расшивочных колодках в соответствии со схемой (см. рис. 3). Получившиеся две половины вторичной обмотки (II и III) в дальнейшем могут быть соединены или параллельно (начало II с началом III, конец II с концом III) для сопротивлений нагрузки от 15 до 100 Ом, или последовательно (конец II с началом III) для сопротивлений нагрузки от 150 до 600 Ом. Использовать переключатель для коммутации половины вторичной обмотки, на первый взгляд, удобно, но это внесет лишние нелинейные сопротивления контактов и может ухудшить звук.

Транзистор VT1 стабилизатора питания необходимо установить на изолированный от корпуса радиатор площадью около 100 см 2 . Под корпус транзистора лучше положить слюдяную изоляционную прокладку толщиной 0,05-0,1 мм, в противном случае радиатор окажется под напряжением +350 В.

Левый и правый каналы усилителя целесообразно будет разместить на одной плате (не обязательно печатной, можно использовать и навесной монтаж) толщиной 1,5-3 мм, лучше из гетинакса. На другой такой же плате смонтируйте элементы источника питания (кроме силового трансформатора). При компоновке элементов усилителя в корпусе постарайтесь разместить трансформаторы подальше друг от друга, особенно выходные от силового. Лучше еще и развернуть их друг относительно друга на 90°, чтобы уменьшить взаимные магнитные наводки.

Общие рекомендации по конструированию усилителя - экранирование, компоновка, выбор элементов, в том числе и проводов, - были уже даны в конструкции бестрансформаторного усилителя . В авторском экземпляре трансформаторного телефонного усилителя были использованы следующие типы элементов: все резисторы, за исключением R10, который был проволочным в керамическом корпусе, - южнокорейские угольные (Мощность одного такого резистора 0,25 Вт. Когда нужна большая мощность рассеивания, используются несколько резисторов. Их соединяют последовательно, чтобы увеличить максимально допустимое прикладываемое к ним напряжение ); регулятор громкости - дискретный, РП-1-57; конденсаторы в катодах - "Philips"; накопительный конденсатор выпрямителя корейский "Samhwa"; телефонное гнездо - "Neutrik". Монтажные провода были сделаны из кабеля "Recoton Road Gear OFC Speaker Wire 10GA": кабель расплетается на стренги, которые затем заключаются в лакотканевые (ни в коем случае не полихлорвиниловые! ) трубки, причем направление провода получается противоположным направлению надписи на кабеле.

Налаживание усилителя сводится к подбору типа шестого стабилитрона для получения напряжения +300 В на выходе стабилизатора при отключенной плате усилителя, подбору резисторов R7 в катодах половинок первой лампы до получения на катодах выходных ламп каналов напряжения +(42.. 44) В и балансировке усиления каналов подбором резисторов R1.

Перед началом первого прослушивания оставьте усилитель включенным на сутки, чтобы успели сформоваться электролитические конденсаторы. Перед каждым серьезным прослушиванием дайте усилителю прогреться около часа. Не забывайте периодически промывать все разъемы ваткой, смоченной в спирте. Полярность сетевой вилки также влияет на звук.

Успехов вам, самодельщики!

С. Куниловский

Журнал "Аудио Магазин" №2 1997 г.

Попался мне на глаза симпатишный такой аскетичный ламповый усилитель для наушников . Однотактник с трансформаторным выходом. Входной каскад - обычный общий катод. Выход - однотактный катодный повторитель, нагруженный на трансформатор.

Собран красиво и аккуратно, спроектирован добротно, и звучать должен действительно здОрово, есть лишь одно "но": замечательная лампочка 12B4-A будет жить в данном дизайне очень недолго, её надо будет менять, опять менять, и опять...

Хороший усилитель

Автор разработки - дядечка в возрасте, электронщик-профессионал, даже профессор. Проектирует, собирает и продаёт много ламповой техники, явно весьма высокого качества. Я бы и за бесплатно его пропиарил, но не хочу устраивать анти-рекламу хорошему человеку. Выучка у разработчика того аппарата, похоже, старой закваски, небось в университете только лампы и изучал, и преподавал.

Удивительно, как много т.н. "ламповых гуру" не видят явных багов, которые разработчику, даже немного повозившемуся в своей жизни к примеру с микроконтроллерами, должны быть очевидны. Я имею в виду переходные процессы в системе в моменты запуска и остановки. Любой микроконтроллерщик с самого начала обучен обеспечивать надёжный сброс, а продвинутые ещё и всякие brown-out детекторы пользуют. Лампы же сбрасывать да обнулять вроде незачем. Вот и не выработана у ламповиков привычка думать в измерении, отличном от установившихся режимов.

Схема

Для начала предлагаю посмотреть на схему аппарата, немного помедитировать 😉 Второй канал я обрезал из соображений экономии места - каналы идентичны. На картинку можно "кликнуть", чтобы читались все подробности.

Проблема

Рассмотрим собственно усилитель повнимательней.

Теперь давайте проделаем небольшой умственный эксперимент. При подаче питающего напряжения катоды ламп холодные. Соответственно через вакуум не может течь никакого сколько-нибудь заметного тока. Вопрос: какое будет в такой ситуации приложено напряжение к сетке V3? Чтобы ещё упростить задачку, давайте сотрём ничего не проводящую V1b и несущественную для нашего разговора обвязку.

Опытные товарищи могут заметить, что цепочка фильтра питания R6 C7 задержит подачу высокого напряжения на сетку V3. Увы, постоянная времени этой цепочки всего 0.2 секунды, так что она мало что меняет. Для сравнения - гарантированное время прогрева накала 12B4-A по документации составляет 11 секунд. Время же прогрева собственно катода намного больше (вот соберу свою лампомерку - обязательно опубликую результаты замеров). Жаль на другие лампы таких данных не приводят.

Итого: первые несколько секунд после включения аппарата на сетке и аноде ещё холодной V3 две сотни вольт относительно катода. Да, токи ограничены и лампа в потолок не улетит. Но ускоренная эрозия катода обеспечена.

Кстати, максимальное отрицательное смещение на сетке по документации RCA на 12B4-A не должно превышать 50 вольт. Про максимальное положительное сеточное напряжение они вообще ничего не пишут, видимо решив, что ни один уважающий себя пользователь их продукции не станет учинять такого издевательства над вакуумным прибором, достойным всяческого уважения и признания. Вполне допускаю, что при 200 вольтах напряжения сетка-катод могут происходить пробои. Большой энергии там не выделится - резисторы ограничат ток на уровне не более 2 мА. Но катод будет активно "побит молью".

Популярное решение

К счастью, в среде самодельщиков в последнее время приобрели популярность всевозможные устройства, обеспечивающие задержку подачи анодного напряжения после включения аппарата. Их ещё называют "УЗФ" - устройство задержки и фильтрации. Правда, в подавляющем большинстве исполнений, что мне довелось повидать - устройства те опасны (не защищены от перегрузок по току) и совершенно не помогают при выключении питания.

Красивое решение в дополнение

Более изящное решение было мною подсмотрено у одного мастера ламповой схемотехники из Америки, но скорее всего было известно ещё до него. Достаточно подключить скромный полупроводниковый диод между сеткой и катодом лампы. Конечно делать это стоит только если у этой лампы есть вероятность попасть в неприятную ситуацию, описанную выше. Диод подключаем анодом к сетке, катодом - к катоду лампы. Таким образом кремниевый диод откроется уже при 0.7 вольтах положительного смещения на сетке лампы, эффективно защищая лампу от сеточных токов и избыточных напряжений.

В нормальном же рабочем режиме при отрицательном потенциале сетки относительно катода диод будет закрыт. Собственная ёмкость диода подключается параллельно входной ёмкости лампы и слегка ухудшает частотные характеристики усилителя. Но в большинстве случаев этой дополнительной ёмкостью можно смело пренебречь, потому, что либо миллеровская ёмкость будет влиять на порядки сильнее, либо, как в случае катодного повторителя, влияние входной ёмкости практически ничтожно, во всяком случае в диапазоне звуковых частот и даже до сотен килогерц.

Увы, у диодной защиты есть один очень существенный недостаток: это же полупроводник в ламповом усилителе! Он же "портит звук". К сожалению, ещё очень многие фанаты ламповой техники молятся на идолов и совершенно не желают изучать техническую базу, принципы работы и потроха своих божков. Так что серьёзному инженеру придётся всё же считаться с этими верованиями и либо прятать те диоды, либо не использовать такой метод продления срока жизни вакуумных ламп.

Спорный вопрос

Раз уж Вы, дорогой читатель, добрались досюда - значит тема Вас интересует, и статья была написана не зря. Будьте столь любезны, потратьте ещё минуту-другую, оставьте комментарий: всё ли было понятно, согласны ли Вы с моими выводами, или вопрос так и остался спорным?

Всего Вам доброго, и долгих лет службы Вашим любимым приборам!

This entry was posted in , by . Bookmark the .

Из-за большого объема информации и фотографий статья будет разделена на две части. В первой части Вы узнаете краткую информацию, которая поможет сориентировать Вас на предстоящую работу, во второй части я опишу , а так же поделюсь своими впечатлениями после его прослушивания.

Схема
За основу была взята классическая бестрансформаторная SRPP схема с использованием радиолампы 6н6п, автором которой является Олег Иванов. Схема была мной незначительно изменена и переработана. Были подобраны свои номиналы радиоэлементов и изменена часть схемы блока питания.В зависимости от выбора способа выпрямления анодного напряжения, можно применить выпрямитель на кенотроне либо использовать диодный мост.

Выбор в пользу использования в выпрямителе диодного моста либо кенотрона дело каждого. На диодах минимальное падение анодного напряжения, нет такой нагрузки на трансформатор, также не требуется отдельная накальная обмотка. Для большинства схем ламповых УНЧ диоды вполне подойдут 1N4007.

Кенотронное выпрямление напряжения является классическим методом в ламповой технике, многие отдают ему свое предпочтение из-за эстетических соображений и некоторых преимуществ над полупроводниковыми диодами.

Плюсы в кенотронном питании схемы:
— Плавная подача анодного напряжения, что позволяет продлить срок службы радиоламп усилителя (косвеннонакальный кенотрон);
— Практически полное отсутствие сквозного и обратного тока;
— Ограничение бросков тока в момент включения за счет плавного разогрева катода и подачи напряжения на LC-фильтр цепи анодного питания;
— Уменьшение величины импульсов тока подзаряда конденсаторов фильтра.

К недостаткам кенотронного питания можно отнести:
— Высокое внутреннее сопротивление, из-за которого происходит просадка анодного напряжения;
— Ограниченный ресурс работы кенотрона;
— Для питания кенотрона требуется дополнительная накальная обмотка и вывод средней точки анодной обмотки силового трансформатора;
-При неправильном подборе элементов фильтра, кенотрон может выйти из строя из-за броска тока.

Для устранения пульсаций анодного напряжения используют дроссель с индуктивностью порядка 5Гн (в основательном подходе индуктивность рассчитывается согласно пульсациям БП УНЧ). В данной схеме был использован дроссель Д31-5-0,14.

Макет
Для проверки работоспособности схемы обычно изготавливают макет. Во время работы с макетом можно неоднократно добавлять и менять расположение радиодеталей, менять компоновку, дорабатывать схему, так же решать вопросы, которые могут возникнуть при постройке лампового усилителя. Макет прост в изготовлении. Макетирование схемы можно выполнить навесным монтажом «на проводах» либо используя монтажные стойки. Фанерная основа для макета проста в механической обработке, хорошо сверлятся отверстия и податлива напильнику. Главное при распайке схемы сделать хорошую земляную (минусовую) шину.
Монтаж на макете отличается от финального монтажа на шасси. При сборке готового лампового усилителя не допустимы длинные провода и расположение незакрепленных элементов схемы на шасси.

Шасси и элементы корпуса лампового усилителя
Шасси обязательно должно быть железное, так же из этого материала изготавливают защитные кожухи на трансформаторы. Железо является ферромагнитным материалом, его использование убережет от различного рода наводок и избавит от возможности их появления.
Шасси можно самостоятельно выкроить из листового метала, например, из кровельного железа, использовать старый корпус от системного блока компьютера или подобрать подходящую по габаритам металлическую коробочку. Не стоит так же забывать о железных вентиляционных рукавах (коробах).

Защитные кожухи на трансформаторы изготавливаются по аналогии с шасси, либо используют уже готовые решения (различные металлические коробочки, стаканы-баночки из нержавейки). В защитных кожухах следует сделать вентиляционные отверстия для отвода теплого воздуха.

На этапе проектировании шасси следует задуматься о концепции общего вида готового изделия. Лакокрасочное покрытие должно быть нанесено на шасси до того как к нему будет что-то прикручено. Если будут использоваться различные декоративные накладки, то следует продумать заранее и сделать отверстия для их установки.

Радиодетали

Для предотвращения выхода из строя, перегрева и ухода в насыщение силовой трансформатор выбираем с запасом по мощности. Электролитические конденсаторы в фильтре цепи анодного питания также берут с 20% запасом по напряжению. Для уменьшения влияния температуры и внешних атмосферных факторов выбираем советские резисторы с небольшим запасом по мощности. Входные-выходные сигнальные гнезда, корпуса конденсаторов должны быть изолированы от шасси. Шунтирующие конденсаторы выбираются предпочтительно пленочные.

Перед монтажом подберите радиодетали путем измерения мультиметром близко к номиналу, согласно схемы. Так же неплохо проверить силовой трансформатор. Часто трансформаторы для экономии медной проволоки изначально недоматывались на заводах, что приводило к большому току холостого хода первичной обмотки, а это в свою очередь сказывается на гуле трансформатора.

Инструменты для работы
Для удобной работы при постройке лампового усилителя подойдут все слесарные инструменты. Диэлектрические рукоятки инструмента должны быть без повреждений изоляции. Многое, если почти не все, приходится дорабатывать напильником и надфилем.

Для того, чтобы просверлить отверстия в металлическом шасси используют ступенчатое сверло конусовидной формы. Так же для изготовления большого отверстия под ламповую панельку можно воспользоваться несколькими способами. Например, циркулем начертить окружность необходимого диаметра и по линии плотно сверлятся отверстия, затем надфилем стачиваются перемычки между отверстиями. Идеальным способом для сверления является использование сверлильного станка, но большинство лампостроителей обходятся обычной дрелью или шуруповертом.

Для пайки схемы используют мощный паяльник для лужения толстых проводов и проволоки, радиодетали паяются паяльником меньшей мощности, чтобы их не перегреть. Для снятия изоляции проводов и лаковой изоляции на проволоке подходит острый канцелярский нож или скальпель (при зачистки старайтесь не стачивать саму медную проволоку). Хороший пинцет здорово облегчит работу при монтаже и может быть использован как теплоотвод.

Штангенциркуль поможет с точным определением размеров деталей, а также поможет определить диаметры и отверстия для них. Для разметки отверстий используйте линейку и циркуль. Имея в своем радиолюбительском арсенале микрометра, Вы без труда сможете определить диаметр проволоки.

Расположение радиодеталей на шасси
Силовой трансформатор размещаем сверху шасси – это убережет выходные цепи от наводок, исходящих от трансформатора. Радиолампы, гнезда входа–выхода аудиосигнала делают подальше силового трансформатора. Гнезда, на которые будет подаваться-сниматься аудиосигнал, как и переменный резистор регулятора громкости, располагаем близко друг к другу, предпочтительно на передней панели ближе к выходным лампам.
Панельки радиолам лучше разместить на шасси так, чтобы усилитель не имел трехэтажный монтаж радиоэлементов. Умеренное свободное пространство в подвале усилителя позволит быстро внести в схему коррективы и облегчит доступность к радиоэлементам при ремонте.

Распайка схемы
Почти во всех ламповых конструкциях применяется навесной монтаж. При таком способе соединения использование проводов сводится к минимуму, все соединения радиодеталей осуществляются собственными выводами. На лепестках ламповых панелек распаивается часть схемы.

Заземление схемы на корпус шасси делают только в одной точке, точку выбирают экспериментально, подальше от силового трансформатора. Минусовая шина выполняется толстой медной проволокой и заземляется в той же общей точке заземления, что выбрали для заземления.

Перед тем как припаять провод, тщательно осматривайте на целостность его изоляции. Провода анодного питания (анодных цепей) и управляющих сеток не рекомендуется затягивать в жгуты, прокладывать параллельно либо близко друг к другу.

Провода по сечению токопроводящей жилы должны соответствовать потребляемой мощности тока накала и анода ламп. Например, если у вас лампа по паспортным данным потребляет ток накала 600мА, то и диаметр провода должны выбирать в соответствии с предельно допустимым значением тока. Для тока 600мА по таблице допустимых значений для проволоки диаметр провода будет иметь диаметр 0,56мм. Для нескольких ламп следует суммировать общий ток и соответственно подобрать подходящий провод необходимого сечения. Таким же способом определяют допустимую величину тока, которую сможет выдержать обмотка силового трансформатора либо дросселя.

Для устранения фона и дополнительных наводок накальные провода скручивают (два накальных провода по длине перекручивают между собой наподобие «косички»). Фон и наводки устраняются благодаря тому, что переменная составляющая токов наводок протекает по проводникам накала в противофазных направлениях и, соответственно, взаимно компенсируется.

Также для устранения фона накальную обмотку заземляют через искусственную среднюю точку с помощью двух резисторов одинакового номинала сопротивления. Резисторы порядка 100Ом-200Ом запаиваются совместно с накальными проводами на ламповую панельку. Одни концы вывода резисторов соединяются между собой, другие свободные выводы запаиваются к одному и ко второму лепестку накала ламповой панельки. Точку, в которой соединяются резисторы, заземляют на минусовую шину. Если трансформатор имеет у накальной обмотки средний вывод и напряжение на ней равное половине общего напряжения, то его заземляют без использования резисторов (та же средняя точка).

Накальные провода можно сделать параллельно от панельки к панельке, а не вести отдельными проводами к каждой. Для удобства распайки схемы накальные провода первыми припаивают к ламповым панелькам, а сами панельки поворачивают той стороной, которая обеспечит самый удобный монтаж радиоэлементов. Анодные провода от последнего электролита блока питания разветвляются «вилкой» к ламповым панелькам.

Несколько слов о наушниках
В схеме были использованы высокоомные венгерские наушники FDS-26-600 с сопротивлением катушки каждого динамика 600 Ом. Наушники с более низким сопротивлением не тестировались на данном усилителе, возможно, для достижения наилучшего звучания придется поставить выходной звуковой трансформатор (ТВЗ). Обычно ТВЗ перематывается под сопротивления нагрузки, в нашем случае нагрузкой являются наушники, чье сопротивление идеально подходит для данной схемы.

В сети интернет на одном из форумов посвященном ламповой тематике наткнулся на таблицу с данными эксперимента проводимым над схемой усилителя (пожалуйста, напишите в комментариях, чей был эксперимент и на каком форуме, чтобы можно было указать автора в статье). Как я понял, автор не использовал ТВЗ.

Дополнено: Посетитель сайта Андрей указал на автора эксперимента. Параметры радиоламп снимал Игнатенко Юрий Васильевич ссылка на

 
Статьи по теме:
Как сделать удобной работу с большим количеством вкладок в браузере
Вы сможете работать за компьютером быстрее, если оптимально расположите окна и вкладки браузера. Как быстро переключаться между окнами Нажмите и удерживайте клавишу Alt . Затем нажмите и удерживайте Tab , пока не откроется нужное окно. Как просматривать д
Установка и удаление AVG Internet Security Антивирус авг как включить компонент программы
В этом уроке мы рассмотрим, как установить бесплатный антивирус AVG. Почему именно бесплатный? Этот и другие вопросы я подробно опишу ниже! Сегодня проводить время в Интернете без защиты очень опасно, особенно новичку. Под защитой я подразумеваю антивир
Проверенные безопасные способы
С целью заработка в интернете многие пользователи запускают каналы на Ютубе. Идея хорошая, только без качественных роликов и грамотной раскрутки, никогда не получится зарабатывать большие деньги. Контент играет ключевую роль, а публикуя
Сервисы распознования капчи Автоматическое распознавание капчи
Здравствуйте, уважаемые читатели блога сайт. Антикапча (временно это был Антигейт) – это многофункциональная площадка для автоматического распознавания так называемой капчи (защиты от автоматического постинга ботами, а также защиты поисковиков от парсинг