Переключатель елочных гирлянд мощность 500 вт. Простейший переключатель елочных гирлянд (бегущий огонь). Как подключить мощные лампы

Под Новый Год всегда хочется украсить ёлку гирляндами, да ещё сделать так, чтобы гирлянды не просто горели, а переливались, мигали и радовали глаз. Рассмотрим несколько простых схем переключателей гирлянд, в том числе «бегущих огней», для новогодней ёлки или просто для украшения дома. Ни одна из схем не содержит дефицитных деталей или микросхем. Все схемы просты и испытаны не один раз. Начнём с самого несложного переключателя, который можно собрать из простейших деталей.

Переключатель одной гирлянды

В этом переключателе использован минимум деталей, его можно собрать «на коленке».

Схема переключателя одной гирлянды

Переключатель одной гирлянды

На схеме обозначено:

  • L1 - ёлочная гирлянда
  • S1 - стартёр СК-220
  • C1 - конденсатор МБМ 0,5 мкФ, 500 В

Работа схемы

При включении схемы в сеть между электродами стартёра S1 возникает тлеющий разряд, электроды начинают разогреваться. Один из электродов биметаллический, при нагреве он изгибается и замыкается на жесткий электрод, гирлянда L1 зажигается, а электроды стартёра остывают и размыкаются, и заново начинается тлеющий разряд. Конденсатор С1 служит для более медленного и плавного переключения.

Детали схемы

Гирлянда L1 должна быть рассчитана на мощность не более 40 Вт, также это может быть и обычная лампа накаливания на 220 В.

S1 - это обычный стартёр от лампы дневного света. но на 220В, стартёры от светильника с 2-мя лампами с одним стартером (или с 4-мя лампами и двумя стартерами) не подойдут, там стартеры на 127В. Импортный стартёр имеет обозначение ST 111 4-80W.

Конденсатор С1 - любой неполярный на напряжение не ниже 300В, ёмкостью 0,1-2,0 мкФ. От ёмкости зависит частота переключения гирлянды.

Также можно собрать несколько таких схем с конденсаторами разной ёмкости и подключать несколько гирлянд, получится интересный эффект.

Переключатель двух гирлянд

В этом переключателе использован тиристор в качестве переключающего элемента.

Схема переключателя двух гирлянд

Переключатель двух гирлянд

На схеме обозначено:

  • D1 - диод Д226Б
  • L1, L2 - ёлочные гирлянды на 220В
  • VS1 - тринистор КУ201Л
  • R1 - резистор МЛТ-2, 2,4 кОм
  • R2 - резистор МЛТ-0,5, 10 кОм
  • C1 - конденсатор К50-12, 20 мкФ, 350 В

Работа схемы

Данный переключатель лучше всего использовать с гирляндами или лампами разной мощности. Если гирлянды L1 и L2 взять одинаковой мощности, то когда тиристор VS1 закрыт они будут гореть вполнакала, а при открывании тиристора гирлянда L2 погаснет, а L1 загорится в полную мощность.

Поэтому одну из гирлянд нужно взять большей мощности или подключить, например, вместо L1 две гирлянды параллельно, а вместо L2 - одну гирлянду одинаковой мощности. Тогда при закрытом VS1 гирлянды соединены последовательно и будет гореть L2 из-за большего сопротивления.

Если L2 убрать, то получится переключатель на тиристоре для одной гирлянды.

При подаче напряжения на схему конденсатор С1 начинает заряжаться, напряжение на нём возрастает, при определённом значении (зависит от применяемого тринистора) тринистор открывается, а конденсатор начинает разряжаться через резистор R1 и тринистор, VS1 закрывается и цикл начинается заново.

Детали схемы

При указанных деталях можно подключать гирлянды мощностью не более 80 Вт каждая.

Для увеличения мощности можно заменить диод Д226Д на Д245, Д246, Д247, а тиристор следует заменить на КУ202Л(М,Н).

Конденсатор можно использовать К50-3 или другой электролитический на напряжение не ниже 300 В. Изменяя ёмкость конденсатора можно добиться требуемой частоты переключения.

Резисторы можно взять любого типа с близкими номиналами, на мощность рассеяния не меньше указанной.

Для плавной регулировки частоты переключения можно заменить R2 на последовательно соединённые постоянный резистор на 4,7-6,8 кОм и переменный 22-100 кОм. Переменный можно взять типа СП-1.

Переключатель трёх гирлянд

Данная схема похожа на предыдущую, только в ней использовано уже три тиристора.

Схема переключателя трёх гирлянд

Переключатель трёх гирлянд

На схеме обозначено:

  • D1 - диод Д232
  • D2-D4 - диоды Д226Б
  • L1-L3 - ёлочные гирлянды на 220В
  • VS1-VS3 - тринисторы КУ201Л
  • R1-R3 - резисторы МЛТ-2, 10 кОм
  • R4-R6 - резисторы МЛТ-0,5, 2 кОм
  • C1-C3 - конденсаторы К50-35, 100 мкФ, 63 В

Работа схемы

Принцип переключения точно такой же, как и у предыдущей схемы. Только здесь ещё добавлена обратная связь между тиристорами через диоды D2-D4. Диод D1 служит для выпрямления сетевого напряжения.

Детали схемы

При указанных деталях можно подключать гирлянды мощностью до 400 Вт каждая.

Диод Д232 можно заменить на Д231, Д231А, Д232А, Д233, Д245, Д246, Д247 и подобные.

Можно использовать замену остальных деталей как указано в предыдущей схеме.

Частота переключений зависит от номиналов R1-R3, C1-C3.

Переключатель четырёх гирлянд (бегущие огни)

Данный переключатель управляет четырьмя гирляндами и позволяет получить эффект бегущих огней, если гирлянды правильно расположить в определённом порядке. Схема сложнее предыдущих, но зато позволяет плавно регулировать частоту переключений и направление движения бегущих огней.

Схема переключателя четырёх гирлянд

Переключатель четырёх гирлянд

На схеме обозначено:

  • D1-D4 - диоды Д302
  • D5-D8 - диоды Д226Б
  • D9 - стабилитрон КС630А
  • VS1, VS2 - тринисторы КУ201Л
  • VS3, VS4 - динисторы КН102В
  • R1, R5 - резисторы МЛТ-0,5, 220 Ом
  • R2 - резистор МЛТ-2, 15 кОм
  • R3, R6 - резисторы МЛТ-0,5, 39 кОм
  • R4 - переменный резистор СПО-0,5, 33 кОм
  • C1 - конденсатор К50-12, 5 мкФ, 350 В
  • C2 - конденсатор МБМ 0,05 мкФ, 160 В
  • C3 - конденсатор МБМ 0,1 мкФ, 160 В
  • L1-L4 - ёлочные гирлянды

Работа схемы

Питание схемы осуществляется выпрямленным и стабилизированным напряжением около 130 В. Это осуществляется деталями D1-D4, R1, C1, R2, D9.

При подаче напряжения начинают заряжаться конденсаторы С2 и С3, они заряжаются до напряжения открывания динисторов VS3 и VS4. Первым открывается динистор VS3, так как С2 меньшей ёмкости и заряжается через меньшую цепочку сопротивлений. Открывается тринистор VS1 и загорается гирлянда L1 или гирлянда L2, это зависит от того, в какой полупериод сетевого напряжения это произошло.

Затем открывается динистор VS4 и, соответственно, тринистор VS2, загорается гирлянда L3 или L4 (также зависит от полярности полупериода). В это же время конденсатор С3 разряжается через цепочку VS4, VS2, R5, создавая на R5 отрицательный импульс, импульс поступает на С2 и VS3 закрывается, соответственно тринистор VS1 тоже закрывается, гирлянда L1 (или L2) гаснет.

Номиналы деталей подобраны так, чтобы С2 заряжался около 5 мс (что соответствует четверти периода сетевого напряжения), а С3 заряжался около 15 мс (3/4 периода). За счёт этого гирлянды будут переключаться с частотой сети (50Гц). А поскольку фаза открывания тринисторов не совпадает с фазой сетевого напряжения, то и происходит эффект «бегущие огни». А направление движения и скорость регулируется переменным резистором R4 - в среднем положении его движка эффекта бегущих огней не будет, чуть вправо или влево и огоньки побегут в соответствующую сторону, со скоростью соответствующей углу поворота от «средней точки».

Детали схемы

При указанных деталях мощность каждой гирлянды не должна превышать 60 Вт. Для увеличения мощности до 200 Вт можно поменять диоды D5-D8 на Д302-Д304 или другие с максимальным выпрямленным током от 1А и обратным напряжением не ниже 300 В. Для увеличения яркости свечения можно стандартные гирлянды на 220В укоротить на соответствующее число лампочек (примерно на 20%), чтобы в сумме стало не менее 180 В.

Диоды D1-D4 можно заменить на диодный мост КЦ405А(Б,В,Г) или на другие на ток не менее 1А и напряжение не ниже 300 В.

Конденсатор С1 можно взять любой электролитический на напряжение не ниже 300 В.

Остальные детали и их номиналы лучше не менять, в этом случае, возможно, не потребуется настройка устройства.

Тиристоры можно взять любые, рассчитанные на обратное напряжение не ниже 300 В.

Динисторы можно взять любые с напряжением открывания 20-80 В.

Конденсаторы С2, С3 любые бумажные, металлобумажные на напряжение не ниже 160 В.

Резисторы любые непроволочные, с номиналами близкими к указанным и на мощность не ниже указанной.

Настройка устройства

Каждый из резисторов R3 и R6 заменяем на цепочку из постоянного на 18-22 кОм и переменного на 47-100 кОм. R4 устанавливаем в среднее положение, переменный резистор цепочки, заменяющей R3 - в минимальное сопротивление. Переменным резистором в цепочке, заменяющей R6 добиваемся остановки бегущих огней (должны зажигаться только две гирлянды). Затем потихоньку изменяя сопротивление обоих цепочек добиваемся медленного и равномерного переключения бегущих огней.

После чего выключаем устройство, выпаиваем и замеряем получившееся сопротивление цепочек, заменяющих R3 и R6 и впаиваем на их место постоянные резисторы такого же сопротивления. Можно использовать составные резисторы.

ВНИМАНИЕ! Будьте осторожны при настройке и эксплуатации ВСЕХ рассмотренных устройств, в схемах присутствует ОПАСНОЕ для жизни напряжение.

http://elektricvdome.ru

Световые гирлянды используются не только для оформления новогодних елок, но и для подсветки или помещений магазинов. Как правило, они рассчитаны на питание, напряжением 220 вольт. Одним из основных элементов такой конструкции является переключатель елочных гирлянд, схема которого может иметь, как минимум, три варианта. С помощью этого устройства можно автоматически управлять световыми гирляндами таким образом, чтобы создать праздничное настроение. Серии импульсов, в зависимости можно настроить в таком режиме, чтобы они не утомляли зрение.

Первый вариант схемы переключателя гирлянды

Световые гирлянды способны достаточно эффективно оживить любую новогоднюю елку. Наиболее распространенным вариантом считаются бегущие огни, охватывающие сразу три елочные гирлянды.

Основой данной схемы является интегральная микросхема на трех инверторах. Это позволяет собрать конструкцию трехфазного мультивибратора. На схеме видно, что из элементов R1-R3 и С1-С3 собрана цепь, задающая время. Таким образом, благодаря данному моделированию, в определенный момент времени сигнал образуется только на одном из выходов. В результате, лампы Е1-Е3 переключаются поочередно, что и позволяет получить эффект бегущих огней.

Второй вариант схемы переключателя

Во втором варианте также имеется возможность получения эффекта бегущих огней. Одновременно можно регулировать и скорость переключения световых гирлянд.

Работа схемы осуществляется следующим образом. С помощью элементов DD1.1, DD1.2 образуется генератор, вырабатывающий прямоугольные импульсы. Диапазон частоты этих импульсов находится в пределах 0,2-1,0 Гц. Здесь же присутствует и счетчик этих импульсов, собранный с помощью элементов DD2.1, DD2.2. В схеме присутствует резистор R3, который позволяет регулировать частоту переключения световых гирлянд.

Третий вариант схемы переключателя

Третий вариант, представляющий переключатель елочных гирлянд, схема которого состоит из КМОП-микросхем.

Здесь также присутствует генератор прямоугольных импульсов, собранный на элементах DD1.1, DD1.2. Для счетчика импульсов с коэффициентом пересчета 3 использованы два элемента микросхемы DD2. Частота переключения световых гирлянд непосредственно регулируется резистором R2.

Элементы всех трех схем находятся под напряжением электрической сети, опасном для жизни! Поэтому, необходимо соблюдать меры безопасности при проведении электромонтажных работ!

Самодельный переключатель для гирлянды

Вот и Новый год скоро! На прилавках магазинов рядом с мандаринами, конфетами и шампанским появляются елочные игрушки: разноцветные шары, мишура, всевозможные флажки, бусы и, конечно же, электрические гирлянды.

Обычную гирлянду из разноцветных лампочек, пожалуй, и не купить. Зато различных мигалок, в основном китайского производства, просто не счесть. Микроскопические лампочки могут располагаться на куске картона или вплетаются в ковер из проводов, которым можно украсить сразу целое окно.

Елочные гирлянды тоже отличаются большим разнообразием, прежде всего внешним оформлением, дизайном. Стоимость подобных гирлянд невелика, как, собственно, и мощность лампочек.

Большинство гирлянд имеют маленькую пластмассовую коробочку с одной кнопкой, шнуром с сетевой вилкой и проводами, идущими на гирлянду разноцветных лампочек. Оформление гирлянды может быть самым разнообразным.

Самый простой, и дешевый вариант состоит из микроскопических лампочек, вставленных . На обратной стороне упаковочной коробки написана инструкция по замене лампочек и правила техники безопасности, хотя запасных лампочек не прилагается. Именно такие гирлянды продаются в сети магазинов «Все по 38», правда, в последнее время уже по сорок рублей.

Рисунок 1. Гирлянда за сорок рублей

Гирлянды другого фасона имеют на лампочках небольшие пластиковые плафончики, например, в виде прозрачных цветков с лепестками. Но коробочка с кнопкой остается той, же самой, хотя цена гирлянды доходит рублей до двухсот. Попробуем открыть коробочку, и посмотреть, что же там внутри.

Рисунок 2. Внешний вид контроллера гирлянды с тремя тиристорами

В нижней части рисунка показаны два провода, это как раз подключение устройства к сети. Здесь же находится кнопка, с помощью которой переключаются режимы работы. В верхней части можно увидеть три тиристора и провода, отходящие к гирляндам.

В середине платы находится , - такая черная капля, установленная на маленькой печатной плате. Плата имеет контактные площадки, с помощью которых контроллер впаивается в основную плату.

Сколько тиристоров на плате

К выходам микроконтроллера подключаются управляющие электроды тиристоров, которые включают гирлянды лампочек. Микроконтроллер имеет четыре выхода, но часто, вместо четырех тиристоров на плате установлено только три, а в некоторых случаях всего два.

Необходимый визуальный эффект достигается подключением гирлянд и расположением лампочек: в одной гирлянде запаяны лампочки двух, а то и трех цветов. Как раз такая плата и показана на рисунке 2.

Если посмотреть на эту плату со стороны печатного монтажа, то можно увидеть, что три тиристора запаяны, а под четвертый имеются отверстия с залуженными контактными площадками, как показано на рисунке 3. В некоторых случаях отверстия даже не просверлены, мол, кому заблагорассудится, просверлит сам.

Рисунок 3. Плата контроллера гирлянды. Свободное место для тиристора

Здесь следует заметить такую особенность: если выход контроллера никуда не подключен, это вовсе не означает, что он нерабочий. Программа во всех контроллерах прошита, видимо, одна и та же, все выходы контроллера задействованы.

В этом легко убедиться с помощью стрелочного тестера. Если померить постоянное напряжение на свободной ноге, то стрелка будет скакать, дергаться и отклоняться вместе с миганием других гирлянд. Достаточно просто запаять в плату недостающий тиристор, и, пожалуйста, получаем полноценную четырехканальную гирлянду.

Тиристор можно взять со старой неисправной платы (бывает, что в негодность приходит контроллер) или за сорок рублей купить дополнительную гирлянду и оттуда извлечь тиристор. Для хорошего дела расходы крайне незначительны!

Принципиальная схема гирлянды

По печатной плате несложно составить принципиальную схему. Существуют две разновидности схем, несколько отличающиеся друг от друга. Первый, наиболее совершенный вариант показан на рисунке 4.

Рисунок 4. Контроллер китайской гирлянды. Вариант 1

Питание всей схемы осуществляется через VD1…VD4. Гирлянды питаются пульсирующим напряжением и включаются контроллером через тиристоры VS1…VS4. Резистор R1 и микроконтроллер DD1 образуют делитель напряжения, на выходе которого получается напряжение 12В.

Конденсатор C1 сглаживает пульсации выпрямленного напряжения. Через резистор R7 сетевое напряжение подается на вход контроллера 1 для синхронизации схемы с частотой сети 220В, что позволяет осуществлять фазовое управление тиристорами. Эта синхронизация позволяет осуществлять плавное зажигание и угасание гирлянд. Именно такие платы можно встретить в дорогих гирляндах.

Плата, показанная на рисунке 3, собрана по несколько упрощенной схеме, которая показана на рисунке 5.

Рисунок 5. Контроллер китайской гирлянды. Вариант 2

Сразу бросается в глаза, что тиристоров всего три штуки, а от выпрямительного моста остался всего один диод. Также исчезли резисторы из управляющих электродов тиристоров. Но, в целом, потребительские свойства остались теми же, что и в предыдущей схеме, несмотря на то, что лампочки зажигаются только тогда, когда на верхнем проводе схемы присутствует положительный полупериод сетевого напряжения. Без выпрямительного моста получается однополупериодное выпрямление.

Этот вариант схемотехнического решения присущ тем гирляндам, которые «все по сорок». Вот, собственно, и все, что можно сказать о схемотехнике китайских елочных гирлянд.

Как подключить мощные лампы

Мощность гирлянд невелика, лампочки просто микроскопические, кроме домашней елки вряд ли куда еще подойдут. Но иногда требуется подключить гирлянду с мощными лампами накаливания, например для декоративной подсветки фасадов зданий. Такая доработка уже была приведена в статье . Схема доработанной гирлянды показана на рисунке 8 в упомянутой статье.

Если не хочется переделывать плату

Гораздо проще обойтись без переделки платы контроллера. Все, что придется сделать, это изготовить четыре мощных выходных ключа с оптронными развязками и присоединить их вместо маломощных гирлянд. Схема силового ключа показана на рисунке 6.

Рисунок 6. Мощный силовой ключ с оптронной развязкой

Собственно, схема типовая, работает безотказно, никаких подводных камней в себе не содержит. Как только засвечивается светодиод оптрона MOC3021, открывается маломощный оптронный тиристор и через выводы 4, 6 и резистор R1 соединяются управляющий электрод и анод симистора BTA16-600. Симистор открывается и включает нагрузку, в данном случае гирлянду.

Оптрон следует применить без встроенной схемы CrossZero (детектор перехода сетевого напряжения через ноль), например, MOC3020, MOC3021, MOC3022, MOC3023. Если оптрон имеет узел CrossZero, то схема РАБОТАТЬ НЕ БУДЕТ! Об этом забывать не следует.

Симистор BTA16-600 обладает следующими параметрами: прямой ток 16А, обратное напряжение 600В. При токе 5А и напряжении 220В мощность нагрузки уже целый киловатт. Правда, потребуется установить симистор на радиатор.

Металлическая подложка изолирована от кристалла, о чем говорит буква А в маркировке симистора. Это дает возможность устанавливать симисторы на радиатор без слюдяных прокладок и изоляторов для винта. Кстати, именно эти симисторы стоят в регуляторах мощности бытовых пылесосов, при этом радиатор обдувается потоком воздуха на выходе пылесоса.

Если мощность нагрузки не более 400Вт, то можно обойтись и без радиатора. Цоколевка симистора показана на рисунке 7.

Рисунок 7. Цоколевка симистора BTA16-600

Этот рисунок будет совсем не лишним при сборке схемы силового ключа. Все четыре силовых ключа, лучше всего, собрать на общей печатной плате. Резистор R лучше собрать из двух резисторов мощностью по 2Вт, что позволит избежать их чрезмерного нагрева. Максимальный ток входного светодиода оптрона 50мА, поэтому ток в 20…30мА обеспечит его долговременную безотказную работу.

Рисунок 8. Подключение силовых ключей к плате контроллера

В целом все понятно и просто. От контроллера отпаиваются гирлянды, а вместо них запаиваются входные цепи силовых ключей. При этом не требуется никакого вмешательства в печатный монтаж контроллера. Исключение составляет только запаивание дополнительного тиристора, при условии, что его удастся найти. Также придется несколько умощнить сетевой шнур с вилкой, поскольку оригинальный имеет очень маленькое сечение.

При правильном монтаже и исправных деталях схема не нуждается в настройке. Конструкция устройства произвольная, лучше всего в металлическом корпусе, подходящих размеров, который будет выполнять роль радиатора для симисторов.

С целью обеспечения электробезопасности устройство следует включать через автоматический выключатель, или хотя бы плавкий предохранитель.

Украшением любого новогоднего праздника, конечно же, является елка. Кроме того что елку принято наряжать различными игрушками, на нее так- же обычно вешают и световые гирлянды из лампочек или светодиодов.

В наше время практически все новогодние гирлянды уже снабжены различными переключающими устройствами, но может случится так что это устройство выйдет из строя и тогда выход лишь один- приобретать новую...

Но можно поступить и иначе- самому изготовить переключатели гирлянд их подручных материалов- это и гораздо интереснее да и область применения таких устройств может не ограничиться лишь новогодними праздниками.

Здесь представлено три схемы переключателей гирлянд предназначенных для самостоятельной сборки выполненных на логических микросхемах:

Переключатель двух гирлянд

Это простейший мультивибратор выполненный на всего одной микросхеме серии К176ЛА7 (можно применить микросхему К176ЛЕ5). Сам мультивибратор собран на первых двух элементах микросхемы. Частот его регулируется резистором R2. Два остальных элементах микросхемы играют роль буфера между мультивибратором и выходным каскадом на тиристоре. Импульсный сигнал на эти элементы будет поступать в противофазе и, следовательно, гирлянды будут включаться поочередно.
Схема питается от простейшего источника на гасящем конденсаторе и стабилизатора.
Следует учесть еще тот факт что питание на сами гирлянды поступает через однополупериодный выпрямитель и поэтому яркость свечения может быть немного ниже желаемой.

Бегущие огни на трех гирляндах

Данная схема построена по тому же принципу что и предыдущая с тем лишь дополнением что здесь введены дополнительные элементы. Задающий мультивибратор вырабатывает три импульсные последовательности, фазы импульсов которых сдвинуты относительно друг друга на треть периода.
Частоту следования импульсов можно менять подбором резисторов R1,R2,R3 и конденсаторов C1, C2, C3. Но при этом следует учитывать главное правило: R1=R2=R3 а также C1=C2=C3.

Бегущие огни на четырех гирляндах

Данное устройство собрано всего лишь на одной микросхеме серии К176ИЕ12 (так называемой "часовой").
Особенность ее состоит в том что она имеет встроенный генератор импульсов и выходы для управления световой индикацией. Импульсы на этих выходах сдвинуты друг от друга на четверть периода и поэтому получается так что логическая единица появляется на них поочередно. Используя это свойство и был изготовлен этот автомат- просто к выходам (по схеме это выводы 3, 1, 12 и 2) подключили тиристоры управления гирляндами.
Частоту задающего генератора (а следовательно и скорость переключения гирлянд) можно изменять вручную при помощи резистора R2.
Питание устройства такое-же как и в самой первой схеме- гасящий конденсатор и простейший стабилизатор.

Устройство выполнено всего лишь на четырех микросхемах (а, в принципе, можно и на трех, но об этом чуть позже...), но позволяет создавать довольно много эффектов. Это: бегущий огонь, бегущая темная точка, нарастающее включение и попарное переключение. Выбор режима производится при помощи переключателя и кнопки. Схема устройства приведена ниже:

На микросхеме DD2 выполнен мультивибратор , частота импульсов которого зависит от емкости конденсатора C1 и номинала резисторов R1, R2. Изменяя сопротивление которых можно менять частоту работы мультивибратора а, следовательно, и скорость переключения гирлянд. С этой целью в качестве R2 применен переменный резистор.

По опыту сборки могу добавить что емкость конденсатора С1 желательно уменьшить до 100 мкФ.

Импульсы с мультивибратора поступают на счетные входы триггеров DD3.1, DD3.2, DD4.1, D4.2, в качестве которых применены две микросхемы К155ТМ2.

Работает устройство так:

При нажатии на кнопку SB1 "корректировка", на вход первого триггера (DD4.2) поступит определенный сигнал (либо логический "0" либо логическая "1", все будет зависеть от положения переключателя SA1). К примеру, пусть переключатель находится в положении "1" и все триггеры "обнуленные".

Тогда: при кратковременном нажатии на кнопку SB1 "корректировка" с иверсного выхода триггера DD3.1 (вывод 8) на вход триггера DD4.2 поступит логическая "1". При поступлении на счетный вход микросхемы (вывод3) импульса с мультивибратора, триггер примет устойчивое положение логической "1", при котором на выходе триггера (вывод5) будет "1".

При поступлении второго импульса с мультивибратора триггер DD4.2 вновь "обнулится", а триггер DD4.1, наоборот, примет положение "1" и так далее...

При желании число триггеров можно увеличить и увеличить число гирлянд.

Если же кнопка SB1 в это время все еще будет удерживаться в нажатом положении, то на входе триггера DD4.2 будет по- прежнему логичекая "1" и, следовательно при следующем тактовом импульсе с мультивибратора он останется в положении "1".

Когда- же, наконец, очередь дойдет до последнего триггера DD3.1, то и на его выходе (вывод 9) будет логическая "1" и через переключатель она поступит снова на вход триггера DD4.2.

Таким образом получим эффект "бегуший огонь", который будет продолжаться пока не обесточить схему или выбрать другое положение переключателя.

В положении "6" переключателя SA1, к цепочке из триггеров подключается еще одна микросхема DD1, позволяющая внести в схему еще один эффект: поочередное переключение всех программ, но, в принципе, её можно и не устанавливать: мы всего лишь потеряем один из эффектов.

Или как вариант, можно вместо микросхемы К155ЛЕ1 применить микросхему К155ЛАЗ.

Схема замещения:

Можно несколько упростить этот узел, если применить в нем один из элементов микросхемы К155ЛП5. При таком варианте 3 вывод микросхемы подсоединяется к «6» контакту переключателя SA1. Выводы 1 и 2 подключаются к выводам 12 и 9 элемента DD3.1. Не забудьте подать на микросхему питание - выводы 7 и 14. Если вы примете один из этих вариантов, то необходимо будет развести новую печатную плату.

 
Статьи по теме:
Как сделать удобной работу с большим количеством вкладок в браузере
Вы сможете работать за компьютером быстрее, если оптимально расположите окна и вкладки браузера. Как быстро переключаться между окнами Нажмите и удерживайте клавишу Alt . Затем нажмите и удерживайте Tab , пока не откроется нужное окно. Как просматривать д
Установка и удаление AVG Internet Security Антивирус авг как включить компонент программы
В этом уроке мы рассмотрим, как установить бесплатный антивирус AVG. Почему именно бесплатный? Этот и другие вопросы я подробно опишу ниже! Сегодня проводить время в Интернете без защиты очень опасно, особенно новичку. Под защитой я подразумеваю антивир
Проверенные безопасные способы
С целью заработка в интернете многие пользователи запускают каналы на Ютубе. Идея хорошая, только без качественных роликов и грамотной раскрутки, никогда не получится зарабатывать большие деньги. Контент играет ключевую роль, а публикуя
Сервисы распознования капчи Автоматическое распознавание капчи
Здравствуйте, уважаемые читатели блога сайт. Антикапча (временно это был Антигейт) – это многофункциональная площадка для автоматического распознавания так называемой капчи (защиты от автоматического постинга ботами, а также защиты поисковиков от парсинг